دانلود پایان نامه و مقاله کارشناسی ارشد

دانلود پایان نامه و مقاله کارشناسی ارشد- متن کامل - همه رشته ها

دانلود پایان نامه و مقاله کارشناسی ارشد

دانلود پایان نامه و مقاله کارشناسی ارشد- متن کامل - همه رشته ها

پایان نامه بررسی تخریب سونوشیمیایی مالاشیت سبز در محلول آبی در حضور رادیکال های پرسولفات فعال ...

گرفته است]12 [.
2-1- آلودگی آب ها
با توجه به مطالب فوق جلوگیری از آلودگی آب‌ها و تصفیه آب‌های آلوده به عنوان یک ضرورت حیاتی مطرح است که در قدم نخست باید عوامل آلوده‌کننده را شناخت که این عوامل در سه گروه اصلی طبقه‌بندی می‌شوند:
1- فاضلاب‌ها و پساب‌ها
2- آلودگی‌های کشاورزی
3- سایر آلوده‌کننده‌ها
3-1- روش‌های نوین تصفیه آب‌های آلوده
1-3-1- استفاده از فرایند‌های اکسیداسیون پیشرفته
محققین متعددی فعالیت خود را بر روی دسته‌ای از روش‌های اکسیداسیون تحت عنوان فرایند‌های اکسیداسیون پیشرفته متمرکز نموده‌اند. ویژگی عمده این فرایند‌ها این است که در دما و فشار محیط قابل انجام هستند. اگرچه فرایند‌های اکسیداسیون پیشرفته به دستجات متعددی مانند: UV/O3، UV/H2O2، UV/TiO2، US و فتولیز مستقیم توسط اشعه UV تقسیم می‌شوند، ولی ویژگی مشابه عمده آن‌ها تولید حد واسط‌های فعال با عمر کوتاه حاوی اکسیژن مانند رادیکال هیدروکسیل می‌باشد. رادیکال‌های هیدروکسیل گونه‌های اکسیدکننده بسیار فعالی هستند که با ثابت سرعت بالا (106-109M-1s-1) به ترکیبات آلی حمله نموده و آن‌ها را تخریب می‌نمایند.
انتخاب‌گری رادیکال‌های هیدروکسیل در حمله به آلاینده‌های آلی خیلی کم است، این ویژگی در واقع یک خاصیت مفید برای یک اکسیدکننده است است که در تصفیه پساب و به منظور حل مسایل و مشکلات آلاینده‌ها استفاده می‌شود. از آنجا که فرایند‌های اکسیداسیون پیشرفته از واکنشگر‌های گران‌قیمتی نظیر H2O2 و یا O3 استفاده می‌کنند، بنابراین در مواقعی که از فرایند‌های اقتصادی‌تری نظیر تخریب بیولوژیکی نتوان برای حذف آلاینده‌ها بهره برد، می‌توان فرایند‌های اکسیداسیون پیشرفته را جایگزین فرایند‌های مذکور نمود.
همانطوریکه در شکل 1-1 نشان داده شده است فرایند‌های اکسیداسیون پیشرفته به سه دسته فرایند‌های اکسیداسیونی، فتوکسیداسیونی و فتوکاتالیستی تقسیم‌بندی می‌شوند. در فرایند‌های فتواکسیداسیونی از ترکیب اشعه فرابنفش با یک اکسیدکننده نظیر H2O2 و یا O3 استفاده می‌شود و در فرایند های فوتوکاتالیستی از ترکیبات اشعه فرابنفش و یک فتوکاتالیزور نیمه‌رسانا نظیر ZnO، TiO2 و… استفاده می‌شود. بطور کلی فرایند‌های اکسیداسیون پیشرفته بر واکنش‌های تخریبی اکسیداسیونی متکی هستند که در طی این فرایندها رادیکال‌های آلی در اثر فتولیز آلاینده آلی و یا از طریق واکنش با رادیکال هیدروکسیل تولید می‌گردند. در مرحله بعد این حد واسط‌های رادیکالی توسط اکسیژن محلول به دام افتاده و از طریق رادیکال‌های پراکسیل منجر به پیشرفت و در نهایت کامل شدن فرایند معدنی‌سازی می‌شوند]13،14[.
2-3-1- کاربرد امواج التراسونیک در تصفیه آب

در دهه‌های اخیر التراسوند در یک جایگاه مهمی در فرایند‌های مختلف صنایع مثل تصفیه آب های آلوده ،پزشکی و … جای گرفته است و در حفاظت محیطی شروع به یک 

انقلاب جدیدی کرده است.

4-1- قوانین التراسوند

اثرات شیمیایی و بیولوژیکی التراسوند برای اولین بار در سال 1927 توسط لومیس ارائه شد. بطور معمول برای یک شیمیدان، صوت به عنوان اولین صورت از انرژی برای فعال کردن یک واکنش شیمیایی مورد توجه قرار نمی‌گیرد. امروزه دانشمندان زیادی به یک موضوع تحقیقاتی جدید به نام سونوشیمی[1] علاقمند شده اند. این اصطلاح اساساً برای توصیف تأثیر امواج ماورای صوت بر واکنش‌های شیمیایی، همچنین به فرایندهایی که انرژی ماورای صوت در آن‌ها مورد استفاده است، به کار می‌رود. این اسم از یک پیشوند به نام سونو که نشان‌دهنده‌ی صوت است مشتق شده است، مانند تکنیک‌های قدیمی‌تری نظیر فوتوشیمی و الکتروشیمی که نور و الکتریسیته را برای رسیدن به فعالیت شیمیایی مورد استفاده قرار می‌دهند. در هر حال برخلاف بسیاری از تکنولوژی‌های شیمیایی که نیاز به برخی خاصیت‌های خاص سیستم است تا مورد استفاده قرار گیرند، مانند استفاده از ماکروویو (گونه‌های دوقطبی)، الکتروشیمی (محیط هادی) و فوتوشیمی (حضور کورموفور: گروهی است که قادر است توسط تابش 

این مطلب را هم بخوانید :


دانلود پایان نامه درباره رهبری مدیران - دوشنبه سی و یکم تیر ۱۳۹۸

نور فعال شود)، در امواج ماورای صوت تنها نیاز به حضور یک مایع برای انتقال انرژی آن است. از این نظر سونوشیمی می‌تواند به عنوان یک روش عمومی فعالسازی مانند ترموشیمی (گرما) و پیزوشیمی (فشار) مورد توجه قرار گیرد]15[.

1-4-1- انرژی صوت
صوت با ایجاد حرکت ارتعاشی مولکول‌های محیطی که از آن گذر می‌کند انتقال می‌یابد. این حرکت می‌توانند مانند موج‌های ایجاد شده ناشی از انداختن سنگ کوچکی در استخر آب ساکن تجسم شود. امواج حرکت می‌کنند اما مولکول‌های آب که موج را تشکیل داده‌اند بعد از عبور موج به محل ابتدایی خود برمی‌گردند. امواج صوتی می‌تواند به صورت یک سری خطوط عمودی یا رنگ سایه‌زده‌شده نشان داده شود که فاصله بین خطوط یا میزان پررنگی سایه نشان‌دهنده شدت است یا ممکن است به صورت یک موج سینوسی نشان داده شود (شکل 2-1) در اینجا PA فشار محیطی در سیال و موج سینوسی تغییرات فشار نسبت به مکان را در یک زمان ثابت نشان می‌دهد. Pw دامنه موج و λ طول موج می‌باشد.
تاکنون سوت‌های دمشی در آزمایشگاه به هیچ وجه تأثیری روی واکنش‌های شیمیایی نداشته است، این به خاطر تولید انرژی صوتی در هوا و عدم انتقال صوت تولید شده در هوا به درون مایع است و همچنین از نظر تکنیکی به خاطر ممانعت بین دو ماده متفاوت می‌باشد. مواد مختلف مقاومت‌های متفاوتی در برابر عبور صوت دارند که توسط خواص الاستیکی و سطح مقطع نواحی تعیین می‌شود.
التراسوند شامل فرکانس‌هایی با طول موج بالاتر از kHz20 تا MHz10 را شامل می‌شود که خارج از قدرت شنوایی انسان است می‌تواند به دو ناحیه مشخص توانی و تشخیصی تقسیم شود، اولی معمولا در فرکانس‌های پایین‌تر را شامل می‌شود، جایی که انرژی صوتی بیشتری برای ایجاد حفره‌سازی در مایعات می‌تواند ایجاد شود (شکل 1-3). امواج ماورای صوت با فرکانس بالا در حدود MHz5 و بالاتر باعث حفره‌سازی نمی‌شوند و این محدوده‌ای است که برای عکس‌برداری در پزشکی استفاده می‌شود]15[.
2-4-1- اهمیت فراصوت توانی در صنعت
گذشت سالیان دراز نشان داده است که فراصوت توانی از قابلیت بالایی برای استفاده در گستره‌ی وسیعی از فرایندها در صنایع شیمیایی و صنایع مربوطه برخوردار است. برخی از این کاربردها سالها است که شناخت شده‌اند و استفاده می‌شوند، در حالی که بعضی دیگر دست‌خوش تغییر عمده شده‌اند و برای استفاده در زمینه‌های جدید و مهیجی مانند استفاده از فراصوت توانی در درمان بیماری‌ها (جدول 1-3) توسعه

پایان نامه بررسی کارآیی نانوذرات تیتانیوم دی اکسید تثبیت شده در حذف کلرامفنیکول بعنوان یک آلا...

2-11- روش اندازه گیری غلظت CAP موجود در محلول…………………………….. 43
2-12- روش آماده سازی نمونه ها برای اندازه گیری TOC…………………………
2-13- روش آماده سازی نمونه ها برای اندازه گیری میزان یون های آمونیوم، نیترات، نیتریت و کلرید…… 45
2-14- اندازه گیری نیترات به روش اسپکتروفتومتری………………………. 46
2-15- اندازه گیری نیتریت به روش اسپکتروفتومتری………………………… 46
2-16- اندازه گیری کلرید به روش آرژانتومتری……………………………… 46
2-17- اندازه گیری آمونیوم به روش رنگ سنجی به کمک شناساگر نسلر…….. 47
فصل سوم: نتایج و بحث
3-1- مشخصات بسترهای تهیه شده از نانوذرات TiO2-P25 بر روی صفحات شیشه ای….. 48
3-1-1-  تصاویر SEM…………………………………………………………………
3-1-2- تصاویر AFM………………………………………………………………….
3-2- تأثیر پارامترهای عملیاتی در راندمان حذف کلرامفنیکول توسط نانوذرات TiO2-P25 تثبیت شده بر روی صفحات شیشه ای….. 53
3-2-1- بررسی تأثیر غلظت اولیه کلرامفنیکول…………………………………… 53
3-2-2- بررسی تأثیر شدت نور فرابنفش………………………………………. 55
3-2-3- بررسی تأثیر pH……………………………………………………………….
3-3- طراحی آزمایشات فعالیت فتوکاتالیزوری نانوذرات TiO2-P25 تثبیت شده بر اساس خواص آرایه های متعامد….. 60
3-3-1- بهینه سازی میزان حذف……………………………………………….. 63
3-3-2- تعیین شرایط بهینه برای فعالیت فتوکاتالیزوری نانوذرات TiO2-P25 تثبیت شده در حذف CAP………………..
3-3-3- تعیین سهم متغیرهای انتخابی در فعالیت فتوکاتالیزوری نانوذرات TiO2-P25 تثبیت شده در حذف CAP ………
3-4- آنالیز سینتیک حذف CAP توسط نانوذرات TiO2-P25 تثبیت شده بر روی صفحات شیشه ای  در فتوراکتور ناپیوسته.. 70
3-5- مطالعات معدنی سازی CAP توسط نانوذرات دی اکسید تیتانیوم در فتوراکتور ناپیوسته……77
3-6- نتیجه گیری………………………………………………….. 80
3-7- پیشنهادات………………………………………………………………….. 81
منابع………………………………………………………………………. 82
چکیده:
در این تحقیق بمنظور کاربردی نمودن فرایند فتوکاتالیز ناهمگن در حذف آنتی بیوتیک ها از محیط های آبی، کارائی نانو ذرات تیتانیوم دی اکسید تثبیت شده به روش اتصال حرارتی بر روی صفحات شیشه­ای Sand-Blast شده در حذف کلرامفنیکول به عنوان یک ترکیب آنتی بیوتیک بررسی شده است. مشخصات صفحات شیشه­ای پوشش داده شده با نانو ذرات تیتانیوم دی­اکسید توسط تصاویر SEM و AFM بررسی شده است. تأثیر پارامترهای مختلفی نظیر غلظت اولیه کلرامفنیکول، شدت تابش نور فرابنفش و pH در فعالیت فتوکاتالیزوری نانو ذرات تیتانیوم دی اکسید تثبیت شده مورد مطالعه قرار گرفته است. بطوریکه    نانو ذرات تیتانیوم دی اکسید در وضعیت تثبیت شده در شرایط عملیاتی مختلف کارآئی قابل توجهی در حذف کلرامفنیکول از خود نشان می­دهند. نتایج نشان می­دهد که mg L-1 10 از کلرامفنیکول توسط  نانو ذرات تیتانیوم دی اکسید تثبیت شده تحت تابش نور فرابنفش با شدتW m-2 7/36 در مدت زمان 45 دقیقه تقریباً بطور کامل حذف می­شود. نتایج مطالعات معدنی سازی نیز حذف کامل TOC و ایجاد محصولات معدنی سازی نظیر Cl، NO3 و NH4+ را در حد انتظار در زمان های تابش بالاتر نشان می دهد. نتایج طراحی آزمایش به روش تاگوچی مؤثرترین پارامتر در حذف آلاینده مذکور در سیستم تثبیت شده را زمان تابش با سهم 60 درصد نشان می دهد. همچنین نتایج آنالیز سینتیک واکنش، مطابقت سینتیک حذف را با مدل لانگمویر- هنیشلوود نشان می دهد. مدل حاصل از نتایج آنالیز سینتیک فرایند، به خوبی قادر به تعیین ثابت سرعت ظاهری حذف CAP در فرایند مذکور می باشد.
1-1- مقدمه

تمام آبهای طبیعی دارای آلودگی هایی هستند که از فرایند فرسایش، شستشو و هوازدگی خاک ها ناشی می شوند. یکی دیگر از مهمترین عوامل آلودگی های آب های سطحی، تخلیه پسابهای صنعتی و فاضلاب ها به محیط زیست می باشد که اگر بدون تصفیه به محیط زیست وارد شوند، می توانند به طرق مختلف اکوسیستم آبی را بطور نامطلوبی تحت تأثیر قرار دهند. لذا برای حفاظت منابع آبی و زیرزمینی و نیز برای دسترسی به آب آشامیدنی مطلوب لازم است این آلاینده ها را از منابع شان حذف کنیم. بسیاری از فرایندها بمنظور تخریب یا تجزیه این عوامل آلاینده سالهاست بکار برده می شوند که از آنجمله می توان به فرایندهای انعقاد، اکسیداسیون شیمیایی، جذب روی کربن فعال شده، اکسیداسیون کاتالیستی و … اشاره کرد[1،2]. لیکن اکثر این روشها غیرتخریبی بوده و فقط فاز آلاینده را تغییر داده و یک آلودگی ثانویه ایجاد می کنند[4،3]. از میان تکنیک های تصفیه، فرایندهای اکسیداسیون پیشرفت (AOPs)[1] بعنوان یک تکنیک نوین و خوش آتیه مورد توجه ویژه واقع شده است، چراکه این فرایندها قادرند تقریبا اکثر ترکیبات آلی را بطور کامل معدنی نمایند. روش هتروژن فتوکاتالیز یکی از فرایندهای اکسیداسیون پیشرفته، ترکیبی از یک فتوکاتالیزور و 

اشعه فرابنفش یا اشعه نور طبیعی خورشید می باشد که در آن عمدتا دو نوع فاز جامد و مایع وجود دارد. بسته به محیط واکنش می توان از بسترهای ثابت از فتوکاتالیزورها یا از محلول های سوسپانسیونی در فتوراکتورها استفاده کرد که براساس تحقیقات آزمایشگاهی، راکتورهای نوع دوغابی کارآمدتر از راکتورهای با کاتالیزورهای تثبیت شده می باشند، در صورتی که در مقیاس صنعتی، راکتورهای با کاتالیزورهای تثبیت شده و با جریان پیوسته کاربردی تر هستند. با وجود استفاده بسیار زیاد از ترکیبات دارویی در دهه­های گذشته، تنها در چند سال اخیر است که حضور این ترکیبات بعنوان آلاینده در محیط زیست مورد توجه بسیار واقع شده است. یکدسته مهم از ترکیبات دارویی آنتی بیوتیک ها هستند که بعلت ماهیت پایداری که دارند در محیط های آبی خود را نشان می دهند. تلاش های بسیار زیادی برای حذف این ترکیبات در محیط های آبی صورت گرفته است که در این بین فرایندهای اکسیداسیون پیشرفته بعنوان یک روش مؤثر مورد توجه بیشتری قرار گرفته است[5].

در کار پژوهشی حاضر  بمنظور کاربردی نمودن فرایند فتوکاتالیز ناهمگن در حذف آنتی بیوتیک ها از محیط های آبی، کارائی نانوذرات دی اکسید تیتانیوم  تثبیت شده به روش اتصال حرارتی بر روی صفحات شیشه­ای Sand-Blast شده در حذف کلرامفنیکول بعنوان یک ترکیب آنتی بیوتیک بررسی شده است.
2-1- آلاینده های محیط زیستاین مطلب را هم بخوانید :

با افزایش دانش بشری و گسترش تکنولوژی، معضلی به نام آلودگی محیط زیست مطرح می شود که نه تنها در کشور ما،  بلکه برای اکثر کشورهای پیشرفته دنیا از جمله مسائلی است که روز به روز ابعاد پیچیده تری به خود می گیرد. این آلودگی ها منابع آب را نیز تحت تأثیر قرار می دهند. بنابراین حفاظت از محیط زیست در هر کشوری مورد توجه جدی دولتمردان می باشد[6]. ترکیبات دارویی و محصولات بهداشتی از جمله آلاینده های آب هستند و بدلیل انتشار نامحدود و مداوم به داخل محیط آبی، تهدیدی جدی برای اکوسیستم و عموم بشمار می روند. در میان ترکیبات دارویی، آنتی بیوتیک ها بدلیل استفاده گسترده در ایالات متحده امریکا، اروپا و آسیا و … توجه بیشتری را به خود معطوف ساخته اند[7].
3-1- آنتی بیوتیک ها و مشکلات زیست محیطی
اگرچه ترکیبات دارویی قرون بسیاری است که مورد مصرف قرار گرفته اند، تنها طی چند سال اخیر رهاسازی آنها به داخل محیط آبی بعنوان یکی از اضطراری ترین مسائل شیمی محیط زیست شناخته شده است[8]. ترکیبات دارویی بویژه آنتی بیوتیک ها در آب های سطحی، آب های زیرزمینی، فاضلاب ها، رسوبات، خاک و حتی در آب های آشامیدنی شناسایی شده اند. این ترکیبات از طریق منابع مختلفی نظیر صنایع داروسازی، پساب بیمارستان ها و فضولات دامی و انسانی به محیط های آبی می رسند[7].
وجود ترکیبات دارویی در محیط های آبی ممکن است موجب تحمیل سمیت تقریبا بر تمام سلسله مراتب بیولوژیکی مانند سلول ها، ارگانیسم ها، جمعیت، اکوسیستم و یا اکوسفر شود. علاوه بر تأثیرات سمی، گروه خاصی از مواد دارویی نظیر آنتی بیوتیک ها ممکن است منجر به تغییر طولانی مدت و غیرقابل بازگشت در ژنوم[1](مجموعه کامل ژن ها) میکروارگانیسم ها، فرایندهای غیرطبیعی فیزیولوژیکی در تکثیر و گسترش مقاومت آنتی بیوتیکی میکروارگانیسم ها حتی در غلظت های پایین شوند. نتایج نشان می دهد که حضور ترکیبات دارویی باقیمانده در محیط زیست و بخصوص در سیستم های آبی یک مشکل جدی محیطی بوجود می آورد از آنجاکه این ترکیبات: 1) فوق العاده مقاوم به پروسه های تخریب بیولوژیکی هستند و معمولا بطور کامل از سیستم های تصفیه رایج در امان می مانند، 2) احتمالا سمیت جدی و نیز تأثیرات دیگر بر انسان ها و دیگر ارگانیسم های زنده بوجود آورند و 3) در غلظت های کم موجودند، بنابراین نیاز به تجهیزات آنالیزی پیشرفته برای شناسایی دقیق دارند. سرنوشت احتمالی مواد دارویی، زمانیکه وارد محیط آبی می شوند عمدتا سه مورد است:

پایان نامه بررسی فعالیت نانوکاتالیست آندی بر پایه پلاتین جهت کاربرد در پیل های سوختی الکلی م...

4-5- بررسی فعالیت و پایداری کاتالیست  Pt/Cدر محلول قلیایی 2-پروپانول……….. 56
4-5-1- بررسی ولتاموگرام چرخه‌ای الکترود Pt/C در اکسیداسیون 2-پروپانول………… 56
4-5-2- بررسی منحنی­‌های نایکوئیست و کرونوآمپرومتری کاتالیست Pt/C در اکسایش 2-پروپانول… 59
4-6- بررسی فعالیت و پایداری کاتالیست  Pt/Cدر اکسیداسیون 1و2-پروپان‌دی‌ال……….. 60
4-6-1- ولتامتری چرخه‌ای الکترود Pt/C/GC در محلول قلیایی 1و2-پروپان‌دی‌ال…………… 60
4-6-2-بررسی پایداری Pt/C اکسیداسیون 1و2-پروپان‌دی‌ال………………………………… 62
4-7- بررسی عملکرد کاتالیست پلاتین/کربن در اکسیداسیون سوخت‌های مختلف…. 64
4-7-1- بررسی و مقایسه ولتاموگرام‌های چرخه‌ای الکترود Pt/C/GC در اکسیداسیون متانول، 2-پروپانول و 1و2-پروپان‌دی‌ال در محیط قلیایی…..65
4-7-2- مقایسه و بررسی نمودارهای ولتامتری روبش خطی Pt/C در اکسیداسیون الکل­های مختلف………67
4-7-3-  مقایسه و بررسی نمودارهای تافل کاتالیست Pt/C  در اکسیداسیون الکل‌ها…………. 68
4-7-4- بررسی نمودارهای کرونوآمپرومتری الکترود  Pt/C/GCدر اکسیداسیون الکل‌های مختلف… 69
4-7-5- مطالعات اسپکتروسکوپی امپدانس الکتروشیمیایی الکترود  Pt/C/GCدر اکسیداسیون الکل‌های مختلف.. 72
4-8-نتیجه گیری……………………………………………………………………………………….. 75
4-9-پیشنهادات…………………………………………………………………………………….. 76
4-10-منابع………………………………………………………………………………………. 77
چکیده:
در این پروژه ابتدا نانوکاتالیست پلاتین/کربن به وسیله‌ی کاهش شیمیایی نمک پلاتین با کاهنده شیمیایی سدیم بور هیدرید سنتز شد. ویژگی‌های ساختاری و مورفولوژی نانوکاتالیست سنتز شده با بهره گرفتن از طیف­سنجی پراکنش انرژی و میکروسکوپ روبش الکترونی مورد بررسی قرار گرفت. فعالیت و پایداری نانوکاتالیست Pt/C در الکترواکسیداسیون الکلهای مختلفی مانند متانول، 2- پروپانول و 1و2- پروپان­دی­ال در محیط قلیایی مورد بررسی قرار گرفت. تکنیک‌های ولتامتری چرخه‌ای، کرونوآمپرومتری و اسپکتروسکوپی امپدانس الکتروشیمیایی برای بررسی واکنش اکسیداسیون استفاده شدند. Pt/C دانسیته جریان بالایی در اکسیداسیون 1و2-‌ پروپان­دی­ال در مقایسه با متانول و 2- پروپانول نشان می‌‌دهد. مقدار پتانسیل آغازی برای Pt/C در اکسیداسیون 1و2- پروپان دی ال مقدار منفی تر نسبت به اکسیداسیون متانول دارد که این امر به دلیل سنتیک سریع واکنش اکسیداسیون 1و2- پروپان دی ال می­باشد. نتایج آزمایشات کرونوآمپرومتری تایید می­‌کند که Pt/C دانسیته جریان پایدارتری در اکسیداسیون 1و2-‌‌‌ پروپان‌دی‌ال نشان می‌­دهد. نتایج حاصل از امپدانس الکتروشیمیایی پس از طی 100 چرخه نشان داد که مقاومت انتقال بار در اکسیداسیون 1و2-‌‌‌ پروپان‌دی‌ال کمترین مقدار و برای 2-پروپانول بیشترین مقدار را دارد. دلیل این امر این است که در اکسیداسیون1و2-‌‌‌ پروپان‌دی‌ال مقاومت کاتالیست در برابر جذب حد واسط بالاست و حد واسط ها به راحتی نمی­‌توانند سایت‌های فعال واکنش را مسدود کنند.
فصل اول: مقدمه ای بر پیل های سوختی
1-1- مقدمه
امروزه در استفاده از سوخت‌­های فسیلی که 80 درصد انرژی زمین را تأمین می­‌کنند دو مشکل اساسی وجود دارد. اول اینکه ذخایر این سوخت‌­ها محدود است و دیر یا زود تمام خواهند شد. دوم اینکه سوخت‌های فسیلی از عوامل اساسی ایجاد مشکلات زیست محیطی مثل گرم شدن کره زمین، تغییرات آب و هوایی، ذوب کوه‌های یخی، بالا آمدن سطح دریاها، باران‌های اسیدی، از بین رفتن لایه ازن و … هستند [1].
در اوایل سال 1970 استفاده از انرژی هیدروژن برای حل مشکلات ناشی از مصرف سوخت‌های فسیلی پیشنهاد شد. هیدروژن یک منبع انرژی عالی با ویژگی‌های فراوان است. هیدروژن سبک‌ترین، تمیزترین و پر­بازده‌ترین سوخت به­حساب می­آید. یکی از ویژگی‌های هیدروژن این است که طی فرایندهای الکتروشیمیایی در پیل­های سوختی می­‌تواند به انرژی الکتریکی تبدیل شود. قابل ذکر است بازده چنین تبدیلی در پیل سوختی بالاتر از راندمان یک موتور احتراق داخلی است که انرژی سوخت فسیلی را به انرژی مکانیکی تبدیل می­ کند. علاوه بر این سوخت، سوخت‌های دیگری نیز همچون الکل‌ها به­خصوص متانول و اتانول به­دلیل چگالی بالای انرژی و آسانی ذخیره‌سازی و حمل آن­ها نیز مورد توجه قرار گرفته‌اند.
2-1- پیل سوختی چیست؟
پیل سوختی یک وسیله الکتروشیمیایی است که انرژی شیمیایی سوخت را به­طور مستقیم به انرژی الکتریکی تبدیل می­ کند. معمولاً فرایند تولید انرژی الکتریکی از سوخت‌های فسیلی شامل چند مرحله تبدیل انرژی است:
– احتراق که انرژی شیمیایی سوخت را به گرما تبدیل می­ کند.
– گرمای تولید شده برای به‌جوش آوردن آب و تولید بخار استفاده می­شود.
– بخار، توربینی را به حرکت در می آورد و در این فرایند انرژی گرمایی به انرژی مکانیکی تبدیل می­شود.
– انرژی مکانیکی باعث راه­اندازی یک ژنراتور و در نتیجه تولید انرژی الکتریکی می­شود.

در یک پیل سوختی برای تولید انرژی الکتریکی نیازی به عمل احتراق نیست و هیچ بخش متحرکی مورد استفاده قرار نمی‌­گیرد، به­عبارت دیگر به­جای سه مرحله تبدیل 

انرژی، در یک مرحله انرژی الکتریکی تولید می‌­شود (شکل1-1).

نکته مهم دیگر که به آن می‌توان اشاره داشت این است که این پیل‌ها موتورهای الکتروشیمیایی هستند نه موتور گرمایی و به­همین دلیل تابع محدودیت سیکل کارنو نبوده و لذا بازده آن­ها بالا می­‌باشد.
مزایای فناوری پیل سوختی عبارتند از:
– آلودگی بسیار پایین و در حد صفر.
پیل­های سوختی که با هیدروژن کار می­ کنند آلودگی در حد صفر دارند و تنها خروجی آن­ها هوای اضافی و آب می­‌باشد. این ویژگی نیز باعث شده پیل‌های سوختی نه تنها برای حمل و نقل مورد توجه قرار گیرند بلکه برای کاربردهای خانگی و نظامی نیز مورد استفاده قرار گیرند. اگر پیل سوختی از سوخت دیگری برای تولید هیدروژن مورد نیاز خود استفاده کند یا اگر متانول را جایگزین هیدروژن در پیل سوختی کنیم آلودگی‌هایی از جمله دی­ اکسید‌کربن تولید می­شود، ولی مقدار این آلودگی­ها کمتر از آلودگی­هایی است که وسایل معمول تولید انرژی به­وجود می­آورند.این مطلب را هم بخوانید :

– وابستگی کمتر به نفت.
هرچند هیدروژن به سادگی در دسترس نیست ولی می­توان آن را از الکترولیز آب یا سوخت­های هیدروکربنی به­ دست آورد.
– عدم وجود بخش­های متحرک و طول عمر بالا.
از آنجایی که پیل سوختی هیچ بخش متحرکی ندارد از نظر تئوری در شرایط ایده­آل طول عمر یک پیل سوختی تا زمانی که سوخت به آن می­رسد می­‌تواند بی‌نهایت باشد.
– وزن و اندازه.
پیل‌های سوختی در ظرفیت­های متفاوتی ساخته می­شود (از میکرووات تا مگاوات) که باعث می­شود برای کاربردهای مختلف مورد استفاده قرار گیرند.
– آلودگی صوتی بسیار پایین.
– راندمان بالا نسبت به فناوری‌های دیگر.
3-1- تاریخچه
در سال 1839 ویلیام گرو[1] فیزیکدان و روزنامه نگار انگلیسی اصول کار پیل سوختی را کشف کرد (شکل 1-2). گرو، چهار پیل بزرگ که هر کدام دارای ظرفی محتوی هیدروژن و اکسیژن بودند را برای تولید الکتریسیته به­کار برد. الکتریسیته حاصل آب را در یک ظرف کوچک‌تر به اکسیژن و هیدروژن تبدیل می‌‌‎کرد [1].
اما سابقه تولید پیل سوختی به سال 1889 بر می­گردد که اولین پیل سوختی توسط لودویک مند[1] و چارلز لنجر[2] ساخته شد. در اوایل قرن بیستم تلاش­هایی در جهت توسعه پیل سوختی صورت گرفت. در سال 1995 پیل سوختی قلیایی پنج کیلو­واتی ساخته شد.
از سال 1960 سازمان فضایی آمریکا (ناسا) از پیل­های مزبور در سفینه­های جیمینی و آپولو جهت تولید الکتریسیته و تهیه آب مورد نیاز فضانوردان استفاده کرد. در طی دهه هفتاد فن­آوری پیل سوختی در

پایان نامه بررسی اثر سویه های منتخب باکتری خانواده سودوموناس بر عملکرد و اجزای عملکرد ارقام ...

2-9-4- تاثیر PGPR بر عملکرد گیاهان. 34

2-10- تاثیر PGPR بر مرفولوژی و رشد گندم. 35

2-10-1- تاثیر مقادیر مختلف اکسین بر مرفولوژی ریشه گندم. 35

2-10-2- تاثیرPGPR بر رشد گیاه گندم. 35

فصل سوم : مواد و روش ها

3-1- محل و زمان اجرای آزمایش… 40

2-3- طرح آزمایشی وعملیات زراعی.. 40

3-2- فاکتورهای اندازه گیری در هر فصل رشد. 43

3-2-1- اندازه گیری خصوصیات مرفولوژیکی.. 43

3-2-2- اندازه گیری خصوصیات فیزیولوژیکی رشد. 43

3-2-1-1- محاسبه درجه روز رشد. 43

3-3- اجزای عملکرد. 44

3-4- روند تغییرات وزن ماده خشک (TDM) 45

3-5- اندازه گیری ازت و پروتئین (روش کلدال) 45

3-6- اندازه گیری فسفر گیاه  (بروش اولسن ) 46

 فصل چهارم: نتایج و بحث

 4-1- صفات مرفولوژیکی و زراعی.. 49

4-1-1- ارتفاع بوته. 49

4-1-2- تعداد پنجه در بوته. 49

4-1-3- شاخص خوشه در مترمربع. 50

4-1-4- تعداد سنبلچه در خوشه. 51

4-1-5- تعداد دانه در سنبله. 51

4-1-6- وزن هزار دانه. 52

4-1- 7- عملکرد دانه. 53


4-1-8- شاخص برداشت… 54

4-2- صفات فیزیولوژیکی و بیوشیمیایی.. 55

4-2-1- شاخص سطح برگ… 55

4-2-2- سرعت رشد محصول. 55

4-2-3- سرعت جذب خالص…. 56این مطلب را هم بخوانید :


4-2-4- سرعت رشد نسبی.. 57

4-2-5- میزان ازت… 57

4-2-6- میزان پروتین.. 58

4-2- 7- میزان فسفر. 58

نتیجه گیری کلی.. 67

منابع فارسی……………………………………………………………………………………………………………………………….68

منابع انگلیسی…………………………………………………………………………………………………………………………….72

چکیده انگلیسی………………………………………………………………………………………………………………………….83

 

چکیده

باکتری های محرک رشد ، خانواده ی سودوموناس به طور مستقیم و غیر مستقیم باعث بهبود رشد و  عملکرد گیاه گندم می شوند. در این پژوهش به منظور بررسی تاثیر باکتری بر رشد ، عملکرد و اجزای عملکرد دانه ی چهار رقم گندم آبی متداول کشت در شرایط اقلیمی بجنورد ، آزمایشی در سال زراعی 88-87 در قالب آزمایش فاکتوریل بر پایه ی بلوک های کامل تصادفی در سه تکرار در مزرعه تحقیقاتی دانشگاه آزاد اسلامی واحد بجنورد اجرا شد.چهار سطح باکتری به عنوان عامل اول شامل سویه های سودوموناس  فلورسنت  (P.fluorescens 169) ، سودوموناس پوتیدا  (P.putida 108)، مخلوط دو سویه ی باکتری فلورسنت و پوتیدا و تیمار شاهد بدون تلقیح با باکتری و چهار رقم گندم آبی شامل ارقام زرین ، چمران ، الوند و توس به عنوان عامل دوم در نظر گرفته شدند .بذور گندم پس از تلقیح با سویه های مورد نظر کاشته شدند.در طول دوره ی رشد گیاه ، مراقبت های لازم طبق عرف معمول در تمامی تیمارها به صورت یکسان اعمال شد.قبل از برداشت شاخص های رشد گیاه شامل ارتفاع بوته ، تعداد پنجه های بارور ، تعداد سنبله اندازه گیری و پس از آن بوته ها از سطح خاک کف بر شده و وزن خشک اندام های هوایی (عملکرد بیولوژیک) و دانه و وزن هزار دانه تعیین گردیدند.نتایج بدست آمده نشان داد بالاترین میانگین عملکرد دانه از ارقام دیررس زرین و الوند به ترتیب به میزان 5361 و 4811 کیلوگرم بر هکتار بدست آمد.همچنین بین ارقام مورد بررسی تحت تاثیر باکتری خانواده ی سودوموناس از نظر صفات رشد(سرعت رشد نسبی ، سرعت رشد محصول ، سرعت جذب خالص) و عملکرد کیفی تفاوت معنی داری وجود داشت.بالاترین پروتئین دانه نیز از رقم توس با کاربر تک سویه فلورسنت و پوتیدا بدست آمد.همچنین بالاترین میزان فسفر دانه از رقم زرین با کاربرد تک سویه پوتیدا حاصل شد.بنابراین واکنش ارقام گندم نسبت به کاربردهای تک سویه ی باکتری متفاوت بوده است.همچنین تلقیح مخلوط دوسویه تاثیر بیشتری نسبت به تلقیح آن ها به صورت منفرد ندارد و حتی در مواردی در مقایسه با تلقیح تک سویه تاثیر معنی دار نشان نداده است.

پروژه های کلیدی:سودوموناس پوتیدا ، سودوموناس فلورسنت ، گندم ، عملکرد ، اجزای عملکرد

  

پایان نامه بررسی اثرات آنتی ­اکسیدانی و آنتی­باکتریایی اسانس مرزنجوش (Origanum Vulgare L.) ...

3-3-7- شمارش باکتری­های سرماگرا …………………………………………………………………………………………………………….. 35

3-3-8- شمارش سودوموناس­ها………………………………………………………………………………………………………………………. 35

3-3-9- رنگ­سنجی………………………………………………………………………………………………………………………………………. 35

3-3-10- تجزیه و تحلیل آماری……………………………………………………………………………………………………………………… 36

فصل چهارم: نتایج

4-1- پارامترهای شیمیایی……………………………………………………………………………………………………………………………… 38

4-1-1- آنالیز تقریبی (چربی، پروتئین و خاکستر)……………………………………………………………………………………………. 38

4-1-2- پراکسید…………………………………………………………………………………………………………………………………………… 39

4-1-3- تیوباربیتوریک­اسید……………………………………………………………………………………………………………………………. 40

4-1-4- مواد ازته فرار…………………………………………………………………………………………………………………………………….. 41

4-2- شاخص­های میکروبی……………………………………………………………………………………………………………………………… 42

4-2-1- باکتری­های سرماگرا…………………………………………………………………………………………………………………………… 42

4-2-2- باکتری­های سودوموناس­…………………………………………………………………………………………………………………….. 43

4-3- رنگ­سنجی…………………………………………………………………………………………………………………………………………… 44

فصل پنجم: بحث و نتیجه گیری

5-1- پارامترهای شیمیایی……………………………………………………………………………………………………………………………… 46

5-1-1- آنالیز تقریبی (چربی، پروتئین و خاکستر)……………………………………………………………………………………………. 46

5-1-2- پراکسید…………………………………………………………………………………………………………………………………………… 46

5-1-3- تیوباربیتوریک­اسید……………………………………………………………………………………………………………………………. 47

5-1-4- بازهای ازته فرار…………………………………………………………………………………………………………………………………. 48

5-2- شاخص­های میکروبی (باکتری­های سرماگرا و باکتری­های سودوموناس)……………………………………………………….. 49

 

عنوان                                                                                                                        شماره صفحه

5-3- آنالیز رنگ……………………………………………………………………………………………………………………………………………. 51


نیجه‌گیری نهایی………………………………………………………………………………………………………………………………………….. 52

پیشنهادات…………………………………………………………………………………………………………………………………………………….. 52

فهرست منابع…………………………………………………………………………………………………………………………………………………. 53

 

فهرست اشکالاین مطلب را هم بخوانید :


 عنوان                                                                                                                            شماره صفحه                                                                                                                       

 شکل 1-1- مسیرهای متابولیک استخراج اجزای فعال از بیوسنتز گیاه…………………………………………………………………. 21

شکل 2-2- اجزای اصلی اسانس­ها……………………………………………………………………………………………………………………. 22

شکل 4-1- میزان پراکسید در دو تیمار شاهد (سوریمی بدون افزودن اسانس) و سوریمی حاوی 5/0 درصد اسانس مرزنجوش در طول زمان انجماد…………………………………………………………………………………………………………………………………………………………………….. 39

شکل 4-2- میزان TBA در دو تیمار شاهد (سوریمی بدون افزودن اسانس) و سوریمی حاوی 5/0 درصد اسانس مرزنجوش در طول زمان   40

شکل 4-3- میزان TVN در دو تیمار شاهد (سوریمی بدون افزودن اسانس) و سوریمی حاوی 5/0 درصد اسانس مرزنجوش در طول زمان انجماد…………………………………………………………………………………………………………………………………………………………………….. 41

شکل 4-4- میزان باکتری­های سرماگرا در دو تیمار شاهد (سوریمی بدون افزودن اسانس) و سوریمی حاوی 5/0 درصد اسانس مرزنجوش در طول زمان انجماد…………………………………………………………………………………………………………………………………………………… 42

شکل 4-5- میزان باکتری­های سودوموناس در دو تیمار شاهد (سوریمی بدون افزودن اسانس) و سوریمی حاوی 5/0 درصد اسانس مرزنجوش در طول زمان انجماد…………………………………………………………………………………………………………………………………………… 43

 

فهرست جداول

عنوان                                                                                                                            شماره  صفحه                                                                                                             

 جدول 1-1- مزایا و معایب آنتی­اکسیدان­های طبیعی………………………………………………………………………………………… 17

جدول 1-2- اسانس­های دارای فعالیت آنتی­باکتریایی، اجزای اصلی فعال خود و میکروارگانیسم­های در معرض خطر…. 23

جدول 4-1- نتایج آنالیز تقریبی در دو تیمار شاهد (سوریمی بدون افزودن اسانس) و سوریمی حاوی 5/0 درصد اسانس مرزنجوش در طول زمان انجماد…………………………………………………………………………………………………………………………………………………………… 38

جدول 4-2- نتایج شاخص­های رنگ­سنجی در دو تیمار شاهد (سوریمی بدون افزودن اسانس) و سوریمی حاوی 5/0 درصد اسانس مرزنجوش در طول زمان انجماد…………………………………………………………………………………………………………………………………………… 44

 

 

فصل اول 

مقدمه و کلیات