دانلود پایان نامه و مقاله کارشناسی ارشد

دانلود پایان نامه و مقاله کارشناسی ارشد- متن کامل - همه رشته ها

دانلود پایان نامه و مقاله کارشناسی ارشد

دانلود پایان نامه و مقاله کارشناسی ارشد- متن کامل - همه رشته ها

سنندج بررسی و ارزیابی ترافیک و حمل و نقل شهری با توجه به نیازهای معلولان و جانبازان در سه ...

چکیده:

معلولیت به مثابه پدیدهای زیستی و اجتماعی واقعیتی است که تمام جوامع، صرف نظر از میزان توسعه یافتگی اعماز کشورهای صنعتی و غیر صنعتی با آن مواجه هستند. ارزیابی فضاهای عمومی با توجه به نیازهای معلولان و جانبازان و برنامه ریزی برای آن، یکی از ضروریات هر جامعه، بخصوص جامعه ماست که بعد از جنگ

 تحمیلی با جمع کثیری از جانبازان و معلولان مواجه شده است. بنابراین پژوهش حاضر با هدف بررسی و ارزیابی ترافیک و حمل و نقل شهری با توجه به نیازهای معلولان و جانبازان با بهره گرفتن از روش نمونه گیری تصادفی ساده 195 پرسشنامه با اطلاعات کامل تکمیل گردیده است. برای تجزیه و تحلیل داده ها و آزمون فرضیه ­ها از همبستگی پیرسون استفاده شد. همچنین برای ارزیابی و رتبه بندی مناطق نمونه از مدل تصمیم گیری (Topsis)، استفاده گردید.

یافته های نهایی پژوهش نشان می دهند در شهر سنندج نا مناسب بودن وضعیت پیاده روها و ازدحام و شلوغی دست فروش ها، مغازه دارها، مبلمان شهری به

این مطلب را هم بخوانید :

یک دنیا سرگرمی؛ بهترین بازی های آنلاین موبایل در سال ۲۰۱۷

 عنوان مهمترین مشکل در بحث ترافیک از نظر معلولان و جانبازان برشمرده شده و پس از آن، مناسب نبودن وسایل حمل و نقل عمومی و عدم دسترسی به آن­ها عنوان شده است. با بهره گرفتن از مدل (topsis)، مشخص گردید که وضعیت ترافیک در مناطق مورد

وزارت علوم، تحقیقات و فناوری دانشگاه علوم فنون مازندران پایان نامه مقطع کارشناسی ارشد

جدول‏4‑29: معیارهای ارزیابی ونتایج شبکه MLP. 101

جدول‏4‑30: ماتریس  ConfusionشبکهMLP 101

جدول‏4‑32: ماتریس  Confusionشبکه Perceptrons. 102

جدول‏4‑31: معیارهای ارزیابی ونتایج شبکه Perceptrons 103

جدول‏4‑34: ماتریسConfusion  الگوریتم RBF. 104

جدول‏4‑33: معیارهای ارزیابی ونتایج الگوریتم RBF. 104

جدول‏4‑36:ماتریسConfusion  الگوریتم Neural net 105

جدول‏4‑35:معیارهای ارزیابی ونتایج الگوریتم Neural net 105

جدول‏4‑38: ماتریس Confusion الگوریتم Conjuctive rule. 108

جدول‏4‑37: معیارهای ارزیابی ونتایج الگوریتم Conjuctive rule. 108

جدول‏4‑39: معیارهای ارزیابی ونتایج الگوریتم decision table. 109

جدول‏4‑40: ماتریسConfusion  الگوریتم decision table. 109

جدول‏4‑41 :معیارهای ارزیابی ونتایج الگوریتم DTNB.. 110

جدول‏4‑42: ماتریسConfusion  الگوریتم DTNB.. 110

جدول‏4‑44: ماتریس Confusion الگوریتم JRIP. 110

جدول‏4‑43: معیارهای ارزیابی ونتایج الگوریتم JRIP. 111

جدول‏4‑45: معیارهای ارزیابی ونتایج الگوریتم ONER.. 111

جدول‏4‑46: ماتریس Confusion الگوریتم ONER.. 111

جدول‏4‑47: معیارهای ارزیابی ونتایج الگوریتم PRSIM.. 112

جدول‏4‑48: ماتریس Confusion الگوریتم PRSIM.. 112

جدول‏4‑49: معیارهای ارزیابی ونتایج الگوریتم RIDOR.. 112

جدول‏4‑50: ماتریسConfusion الگوریتم RIDOR.. 113

جدول‏4‑51: معیارهای ارزیابی ونتایج الگوریتم RULE Induction. 113

جدول‏4‑52: ماتریسConfusion الگوریتم RULE Induction. 113

جدول‏4‑53: معیارهای ارزیابی ونتایج الگوریتم RULE Induction single attribute. 114

جدول‏4‑54: ماتریسConfusion الگوریتم RULE Induction single attribute. 114

جدول‏4‑55: معیارهای ارزیابی ونتایج الگوریتم TREE by rule. 114

جدول‏4‑56:ماتریس Confusion الگوریتم TREE by rule. 115

جدول‏4‑57: معیارهای ارزیابی ونتایج الگوریتم part 115

جدول‏7‑58: ماتریسConfusion الگوریتم part 115

جدول‏4‑59: معیارهای ارزیابی ونتایج الگوریتم CHAID.. 119

جدول‏4‑60: ماتریسConfusion الگوریتم CHAID.. 119

جدول‏4‑61: معیارهای ارزیابی ونتایج الگوریتم DECISION TREE 119

جدول‏4‑62: ماتریس Confusion الگوریتم DECISION TREE. 120

جدول‏4‑63: معیارهای ارزیابی ونتایج الگوریتم J48. 120

جدول‏4‑64: ماتریسConfusion الگوریتم J48. 120

جدول‏4‑65: معیارهای ارزیابی ونتایج الگوریتم FT. 121

جدول‏4‑66: ماتریس  Confusion الگوریتم FT 121

جدول‏4‑68: ماتریس Confusion الگوریتم ID3. 121

جدول‏4‑67: معیارهای ارزیابی ونتایج الگوریتم ID3. 122

جدول‏4‑69: معیارهای ارزیابی ونتایج الگوریتم LAD.. 122

جدول‏4‑70: ماتریس Confusion الگوریتم LAD.. 122

جدول‏4‑71: معیارهای ارزیابی ونتایج الگوریتم ADT. 123

جدول‏4‑72: ماتریس Confusion الگوریتم ADT. 123

جدول‏4‑73: معیارهای ارزیابی ونتایج الگوریتم BF. 123

جدول‏4‑74: ماتریس Confusion الگوریتم BF. 123


جدول‏4‑75:معیارهای ارزیابی ونتایج الگوریتم LMT. 124

جدول‏4‑76:ماتریسConfusion الگوریتم LMT. 124

جدول‏4‑77: معیارهای ارزیابی ونتایج الگوریتم J48graft 124

جدول‏4‑78: ماتریس Confusion الگوریتم J48graft 125

جدول‏4‑79: معیارهای ارزیابی ونتایج الگوریتم NB 125

جدول‏4‑80:ماتریس Confusion الگوریتم NB.. 125

جدول‏4‑81:معیارهای ارزیابی ونتایج الگوریتم REEPTREE 126

جدول‏4‑82: ماتریس  Confusion الگوریتم REEPTREE. 126

جدول‏4‑83: معیارهای ارزیابی ونتایج الگوریتم Simplecart 126

جدول‏4‑84:ماتریس Confusion الگوریتم  Simplecart 127

جدول‏4‑85:معیارهای ارزیابی ونتایج روش Libsvm.. 130

جدول‏4‑86: ماتریسConfusion روش Libsvm.. 130

جدول‏4‑87: معیارهای ارزیابی ونتایج روش Support vector machine. 131

جدول‏4‑88: ماتریس   Confusion روش Support vector machine 131

جدول‏4‑89: معیارهای ارزیابی ونتایج روش Support vector machine(linear) 132

جدول‏4‑90: ماتریسConfusion روش Support vector machine(linear) 132

جدول‏4‑91: معیارهای ارزیابی ونتایج روش Speggeous. 132

جدول‏4‑92: ماتریسConfusion روش Speggeous. 133

جدول‏4‑93: معیارهای ارزیابی ونتایج روش W-svm.. 133

جدول‏4‑94: ماتریس  Confusion روش W-svm.. 133

جدول‏4‑95: معیارهای ارزیابی ونتایج روش Fast large. 134

جدول‏4‑96: ماتریس  Confusion روش Fast large. 134

فهرست اشکال و نمودارها

 

شکل‏2‑1: معماری یک نمونه سیستم داده ­کاوی‎‎ 12

شکل‏2‑2: Wx,yوزن یال بینXو Yاست. 15

شکل‏2‑3: درخت تصمیم گیری‎‎‎‎ 17

شکل‏2‑4: شبکه بیزین‎‎ 21

شکل‏2‑5: شبه کد الگوریتم توالی پوشش… 26

شکل‏2‑6: شبکه کد الگوریتم IB3. 29

شکل‏2‑7: شبکه کد مربوطذ به الگوریتمKDD 31

شکل‏2‑8: انواع سیستم های تشخیص تقلب… 38

شکل‏2‑9: معماری یک سیستم تشخیص نفوذ. 40

شکل‏2‑10: چارچوب کلی داده ­کاوی برای کشف تقلب‎‎ 52

شکل‏2‑11: مقایسه خروجی­هابااستفاده ازنمودارROC.. 55

شکل‏2‑12: الگوریتم استخراج شده ازدرخت تصمیم. 61

شکل‏2‑13: عملکرد الگوریتم ژنتیک‎ 63

شکل‏2‑14: قاعده استخراج شده ازالگورِیتم ژنتیک‎‎ 64

شکل‏2‑15: توابع مربوط به الگوریتم ژنتیک ومقداردهی آن­ها 64

شکل‏2‑16: معماری الگوریتم ژنتیک برای تست نفوذ‎‎ 65

شکل‏2‑17: خوشه بندی برایk=2‎‎‎. 67

شکل‏2‑18: شناسایی داده­غیر­نرمال‎‎ 68

شکل‏2‑19: ترکیب دسته­بندی وشناسایی غیر­نرمال.. 68

شکل‏3‑1: معماری پیشنهاد داده شده برای تشخیص نفوذ باروش مبتنی برداده ­کاوی.. 72

شکل‏3‑2: مدلسازی الگوریتم شبکه­عصبی با نرم­افزارRapidminer 78

شکل‏3‑3: مدلسازی الگوریتم مدل­بیزین با نرم­افزارRapidminer 78

شکل‏3‑4: مدلسازی الگوریتم درخت تصمیم با نرم­افزارRapidminer 79

این مطلب را هم بخوانید :


شکل‏3‑5: مدلسازی الگوریتم مدل­قانون­محوربا نرم­افزارRapidminer 79

شکل‏3‑6: مدلسازی الگوریتم مدل بردارپشتیبان با نرم­افزارRapidminer 80

شکل‏3‑7: مدلسازی الگوریتم مدل کاهل بانرم افزارRapidminer 80

شکل‏3‑8: نمونه ­ای ازخروجی نرم­افزار Rapidminerباپارامترهای مختلف ارزیابی.. 81

شکل‏4‑1: نمودار ارزیابی الگوریتم­های مدل بیزین برحسب پارامتر درستی.. 90

شکل‏4‑2: نمودار ارزیابی الگوریتم­های مدل بیزین برحسب پارامتر دقت… 90

شکل‏4‑3: نمودار ارزیابی الگوریتم­های مدل بیزین بر حسب پارامتر یادآوری.. 91

شکل‏4‑4: نمودار ارزیابی الگوریتم­های مدل بیزین برحسب پارامتر F. 91

شکل‏4‑5: نمودار ارزیابی الگوریتم­های مدل بیزین برحسب پارامترهای مختلف… 92

شکل‏4‑6: نمودار ارزیابی الگوریتم­های مدل کاهل برحسب پارامتر درستی.. 96

شکل‏4‑7: نمودار ارزیابی الگوریتم­های مدل کاهل برحسب پارامتر دقت… 97

شکل‏4‑8: نمودار ارزیابی الگوریتم­های مدل کاهل برحسب پارامتر یادآوری.. 97

شکل‏4‑9: نمودار م ارزیابی الگوریتم­های مدل کاهل برحسب پارامتر F. 98

شکل‏4‑10: نمودار مربوط به ارزیابی الگوریتم­های مدل کاهل برحسب پارامترهای مختلف… 98

شکل‏4‑11: نمونه ای ازشبکهMLP. 100

شکل‏4‑12: عملکرد شبکه پرسپتون.. 102

شکل‏4‑13: نمونه ای ازشبکهRBF. 103

شکل‏4‑14:نمودار ارزیابی مدل­های شبکه عصبی برحسب پارامتر درستی.. 105

شکل‏4‑15: نمودار ارزیابی مدل­های شبکه عصبی برحسب پارامتر دقت… 106

شکل‏4‑16: نمودار ارزیابی مدل­های شبکه عصبی برحسب پارامتر یادآوری.. 106

شکل‏4‑17: نمودار ارزیابی مدل­های شبکه عصبی برحسب پارامتر F. 107

شکل‏4‑18: نموداره ارزیابی مدل­های شبکه عصبی برحسب پارامتر مختلف… 107

شکل‏4‑19:نمودار ارزیابی الگوریتم­های مدل قانون­محور برحسب پارامتر درستی.. 116

شکل‏4‑20: نمودار ارزیابی الگوریتم­های مدل قانون­محور برحسب پارامتر دقت… 116

شکل‏4‑21: نمودار ارزیابی الگوریتم­های مدل قانون­محور برحسب پارامتر یادآوری.. 117

مقدمه: امروزه پیشگیری از جرم اهمیت بسزایی نسبت به گذشته پیدا کرده است، زیرا عوامل و انگیزه های ارتکاب ...


در حال حاظر بافت قدیمی شهر ها به لحاظ سنتی بودن ساخت آن، کمتر به مسایل امنیتی و طراحی محیطی توجه شده است. کوچه های قدیمی تنگ بوده و از روشنایی و دید کافی رهگذران برخوردار نمی باشد. ساختمان های قدیمی استحکام لازم را نداشته و نقاط کور زیادی در آنها مشاهده می گردد. در ساخت و سازهای جدید بیشتر به مسایل امنیتی  و طراحی محیطی توجه می شود، مجتمع ها دارای نگهبان بوده و رفت و آمد افراد ناشناس تا حدودی کنترل می گردد، مغازه ها در فضاهای پر تردد و اطراف میادین شهر ساخته می شود و نورپردازی و نظارت بیشتری دارند.

این مطلب را هم بخوانید :




حلقه-گروه‌وارهای توپولوژیکی و بالابرها در فضاهای پوششی دانشگاه شیراز دانشکده علوم دانلود متن کامل پایان نامه مقطع ...

جدول شماره  ‏3‑2: شبه کد عمومی الگوریتم های تکاملی.. 32

جدول شماره  ‏3‑3: شبه کد الگوریتم ژنتیک… 34

جدول شماره ‏3‑4  : شبه کد الگوریتم ازدحام ذرات.. 37

جدول شماره ‏3‑5  : شبه کد الگوریتم رقابت استعماری.. 41

جدول شماره  ‏5‑1: نماد سهم های انتخاب شده. 46

جدول شماره  ‏5‑2: اندازه کاهش یافته داده ها 51

جدول شماره  ‏5‑3: ساختار پیاده سازی آموزش شبکه عصبی با الگوریتم ژنتیک… 54

جدول شماره  ‏5‑4: ساختار پیاده سازی آموزش شبکه عصبی با الگوریتم ازدحام ذرات.. 55

جدول شماره  ‏5‑5: ساختار پیاده سازی آموزش شبکه عصبی با الگوریتم رقابت استعماری.. 56

جدول شماره  ‏5‑6: نتایج mse شبکه عصبی آموزش دیده با الگوریتم ژنتیک… 58

جدول شماره  ‏5‑7: نتایج mse شبکه عصبی آموزش دیده با الگوریتم ازدحام ذرات.. 58

جدول شماره  ‏5‑8: نتایج mse شبکه عصبی آموزش دیده با الگوریتم رقابت استعماری.. 59

جدول شماره  ‏5‑9: نتایج mse شبکه عصبی آموزش دیده با الگوریتم پیش انتشار خطا 59

جدول شماره  ‏6‑1: میانگین و انحراف معیار خطای اجراهای ANN و BP. 61

جدول شماره  ‏6‑2: نتایج خطای پیش بینی با ANN و PSO.. 63

جدول شماره  ‏6‑3: نتایج خطای پیش بینی با ANN و ICA.. 63

فهرست شکل ها

عنوان صفحه

شکل شماره  ‏3‑1 : نمونه ای تحلیل قیمت سهم با ابزارهای رویکرد تحلیل تکنیکال.. 20

شکل شماره ‏3‑2 : فرایند CRISP. 23

شکل شماره ‏3‑3 : ساختار یک نورون.. 27

شکل شماره ‏3‑4 : نمونه ای از یک شبکه عصبی مصنوعی با یک لایه پنهان.. 28

شکل شماره ‏3‑5 : نمونه نورون در شبکه عصبی مصنوعی پیشرو. 29

شکل شماره ‏3‑6 : فلوچارت عمومی الگوریتم های تکاملی.. 32

شکل شماره ‏3‑7 : نمایش ترکیب تک نقطه ای.. 35

شکل شماره ‏3‑8  : نمایش حرکت ذره در PSO.. 36

شکل شماره ‏3‑9: نمایش نمونه ای تقسیم کلونی ها به امپریالیست ها 40

شکل شماره ‏3‑10: حرکت خطی کلونی.. 41

شکل شماره  ‏3‑11: حرکت زاویه ای کلونی.. 41

شکل شماره ‏5‑1  : نمودار قیمت روزانه سهام نماد بکام. 48

شکل شماره ‏5‑2  : نمودار قیمت روزانه سهام نماد وپارس… 48

شکل شماره ‏5‑3  : نمودار قیمت روزانه سهام نماد وغدیر. 49

شکل شماره ‏5‑4  : نمودار قیمت روزانه سهام نماد خودرو. 49

شکل شماره ‏5‑5  : نمودار قیمت روزانه سهام نماد رانفور. 50


شکل شماره ‏5‑6  : شبکه عصبی مصنوعی با داده های سری زمانی.. 53

شکل شماره ‏6‑1  : تابع احتمال تجمعی توزیع نرمال برازش شده خطا 61

شکل شماره ‏6‑2  : تابع احتمال تجمعی توزیع نرمال برازش شده خطا ANN و EAs. 62

مقدمه

بشر در دنیای امروزی به صورت روزمره در بازارهای گوناگون درگیر تصمیم گیری های بیشماری بوده و هر گونه پیشنهادی که امکان بهبود دقت و صحت تصمیم و یا کاهش زمان تصمیم گیری را برای او به ارمغان بیاورد برای وی جذاب و ارزشمند می باشد. یکی از بازارهایی که امروزه رو به رونق بوده و مزایای سیستمهای پشتیبان تصمیم گیری در آن بسیار مشهود می باشد بازارهای پولی و سرمایه شامل بازار بورس اوراق بهادار می باشد. فعالان این بازار به خرید و فروش سهام شرکتها در آن بازار پرداخته و از آن طریق با پذیرفتن ریسکِ آینده سهم برای خود سود و یا زیان به بار می آورند.

در این تحقیق سعی خواهد شد تا با به کارگرفتن تکنیکهای داده کاوی شناخته شده، در مسیر تحقیقات صورت گرفته پیشین،  ترکیبی از الگوریتم شبکه عصبی مصنوعی با الگوریتمهای بهینه سازی تکاملی به منظور پیش بینی قیمت سهام شرکتها در بورس اوراق بهادار ارائه گردد. ترکیب الگوریتم شبکه عصبی مصنوعی با سه الگوریتم بهینه سازی تکاملی ژنتیک، رقابت استعماری و ازدحام ذرات روی حداقل پنج سهم مورد بررسی قرار خواهد گرفت و دقت پیش بینی هر یک محاسبه و ارائه خواهد گردید. خروجی این تحقیق، پیشنهاد بهترین الگوریتم ترکیبی از بین موارد ذکر شده برای پیش بینی قیمت سهام شرکتهای عضو بورس اوراق بهادار خواهد بود.

1-2 تعریف مساله

در بازارهای پولی و سرمایه دو نوع تکنیک اساسی برای تحلیل و تصمیم به خرید و یا فروش سهام شرکتها وجود دارد: تکنیک تحلیل بنیادی[1]، تکنیک تحلیل تکنیکی[2]. در تحلیل بنیادی، از مولفه های اصلی عملکرد و توان شرکت در برابر فرصتها و تهدیدهای بازار و در سطح کلان کشور استفاده شده و در مورد خرید و یا فروش آن سهم تصمیم گیری می شود. در برابر در تحلیل تکنیکی، فرض بر آن است که اثر کلیه عوامل کلان و خرد اقتصادی و نیز توان و عملکرد شرکت در پیشینه تاریخی قیمت سهم وجود داشته و در نتیجه با تحلیل روند قیمت سهم، تصمیم به خرید و یا فروش سهم شرکتی گرفته می شود. پیش بینی و یا پیش گویی قیمت سهم شرکتها در بازارهای اوراق بهادار از مسائلی است که تحقیقات گوناگونی در کشورهای مختلف در مورد آن صورت گرفته است. این تحقیق در بازار بورس اوراق بهادار تهران و تحت رویکرد تکنیک تحلیل تکنیکی سعی خواهد نمود تا به حل مساله پیش بینی قیمت سهم شرکتها پرداخته و پاسخی به نیاز فعالان بورس اوراق بهادار در مورد حل مساله پیش بینی قیمت سهم ارائه نماید.

تعداد صفحه : 102

قیمت :14700 تومان

بلافاصله پس از پرداخت لینک دانلود فایل در اختیار شما قرار می گیرد
و در ضمن فایل خریداری شده به ایمیل شما ارسال می شود.
پشتیبانی سایت :        *       parsavahedi.t@gmail.com
در صورتی که مشکلی با پرداخت آنلاین دارید می توانید مبلغ مورد نظر برای هر فایل را کارت به کارت کرده و فایل درخواستی و اطلاعات واریز را به ایمیل ما ارسال کنید تا فایل را از طریق ایمیل دریافت کنید.
 

پایاننامه کارشناسی ارشد در رشته ریاضی محض(گرایش هندسه)

حلقه-گروهوارهای توپولوژیکی و بالابرها در فضاهای پوششی

 

استاد راهنما:

دکتر محمدرضا فرهنگدوست

 شهریور 1391

چکیده

دراین پایان‌نامه به بررسی ساختارهایی از گروه‌وارها، گروه‌وارهای توپولوژیکی، حلقه- گروه‌وارهای توپولوژیکی، ریخت‌های بین آنها، پوشش‌های گروه‌وارها و حلقه-گروه‌وارهای توپولوژیکی و بالابر‌ها در این زمینه می‌پردازیم. نشان می‌دهیم که مجموعه‌ی کلاس‌های هموتوپی از تمام مسیرها در یک حلقه‌ی توپولوژیکی، یک شیء حلقه‌ی توپولوژیکی می‌باشد. با فرض این‌که  :? یک نگاشت پوششی و  یک حلقه‌ی توپولوژیکی باشد، نشان می‌دهیم رسته‌ی  از پوشش‌های که در آن هر دوی  و  دارای پوشش‌های جهانی هستند و رسته‌ی  از پوشش‌های حلقه-گروه‌وار توپولوژیکی ، که در آن  و  دارای پوشش‌های عمومی هستند، هم‌ارز می‌باشند، که در مقاله‌ی ” حلقه-گروه‌وارهای توپولوژیکی و بالابر‌ها ” توسط “فتیح ازکن، ایسن و هابیل گورسوی” در سال 2006 بررسی شده است.

فهرست مطالب

 

عنوان

 

صفحه
فصل اول: مقدمه1
تعاریف و قضایای استنادی4
فصل دوم 
گروه‌وارها و گروه‌وارهای توپولوژیکی15
فصل سوم 
عمل‌گروه‌وار و کاربرد آن در -فضاها42
فصل چهارم 
این مطلب را هم بخوانید :
پایان نامه در مورد  سبک های مقابله ای - پایان نامه
حلقه-گروه‌وارهای توپولوژیکی63
فصل پنجم 
رسته­ها و بالابرها85
منابع93
واژه‌نامه فارسی به انگلیسی97
واژه‌نامه انگلیسی به فارسی103

 

 

 

 

 

فهرست نمودارها

پیش بینی قیمت سهم در بورس اوراق بهادار به کمک داده کاوی با الگوریتم های ترکیبی تکاملی ...

فصل 4 : روش تحقیق.. 43

4-1 فرایند CRISP.. 43

4-1-1 تعریف مساله43

4-1-2 تحلیل داده ها43

4-1-3 آماده سازی داده ها44

4-1-4 مدلسازی.. 44

4-1-5 ارزیابی.. 44

4-1-6 پیاده سازی.. 45

فصل 5 : اجرا 46

5-1 اجرای فرایند CRISP.. 46

5-1-1 مجموعه داده ها46

5-1-2 کیفیت داده ها و کاهش داده ها50

5-1-3 پیاده سازی شبکه عصبی مصنوعی برای سری های زمانی.. 51

5-1-3-1 معماری شبکه عصبی مصنوعی.. 51

5-1-3-2 تطبیق ورودی های زمانی به عنوان ورودی شبکه عصبی مصنوعی.. 53

5-1-4 پیاده سازی آموزش شبکه عصبی مصنوعی با الگوریتمهای تکاملی.. 54

5-1-4-1 الگوریتم ژنتیک.. 54

5-1-4-2 الگوریتم بهینه سازی ازدحام ذرات.. 55

5-1-4-3 الگوریتم رقابت استعماری.. 56

5-1-4 به کارگیری شبکه عصبی مصنوعی آموزش دیده با الگوریتم های تکاملی.. 58

فصل 6 : تحلیل یافته ها، نتیجه گیری و پیشنهاد ها. 60

6-1 نتیجه گیری و پاسخ به سئوالات تحقیق.. 60

عنوانصفحه

6-2 تحقیقات پیشنهادی آینده. 64

فهرست منابع.. 65

پیوست ها 67

پیوست 1: کد شبکه عصبی سری زمانی با آموزش با الگوریتم پیش انتشار خطا67

پیوست 2: کد شبکه عصبی مصنوعی با آموزش با الگوریتم ژنتیک.. 68

پیوست 3: کد شبکه عصبی مصنوعی با آموزش با الگوریتم ازدحام ذرات.. 71

پیوست 4: کد شبکه عصبی مصنوعی با آموزش با الگوریتم رقابت استعماری.. 73


 

  • فهرست جدول ها

 

 

عنوانصفحه

جدول شماره  ‏2‑1: مقایسه نتایج پیش بینی مدل بت-عصبی با سه مدل دیگر13

جدول شماره  ‏2‑2: مقایسه نتایج پیش گویی مدل ارائه شده با مدلهای دیگر14

جدول شماره  ‏2‑3: نسل  بندی روش های تحقیق در پیش بینی قیمت سهم16

جدول شماره  ‏3‑1: شبه کد الگوریتم پیش انتشار خطا 30

جدول شماره  ‏3‑2: شبه کد عمومی الگوریتم های تکاملی.. 32

جدول شماره  ‏3‑3: شبه کد الگوریتم ژنتیک… 34

جدول شماره ‏3‑4  : شبه کد الگوریتم ازدحام ذرات.. 37

جدول شماره ‏3‑5  : شبه کد الگوریتم رقابت استعماری.. 41

جدول شماره  ‏5‑1: نماد سهم های انتخاب شده46

جدول شماره  ‏5‑2: اندازه کاهش یافته داده ها 51

جدول شماره  ‏5‑3: ساختار پیاده سازی آموزش شبکه عصبی با الگوریتم ژنتیک… 54

جدول شماره  ‏5‑4: ساختار پیاده سازی آموزش شبکه عصبی با الگوریتم ازدحام ذرات.. 55

جدول شماره  ‏5‑5: ساختار پیاده سازی آموزش شبکه عصبی با الگوریتم رقابت استعماری.. 56

جدول شماره  ‏5‑6: نتایج mse شبکه عصبی آموزش دیده با الگوریتم ژنتیک… 58

جدول شماره  ‏5‑7: نتایج mse شبکه عصبی آموزش دیده با الگوریتم ازدحام ذرات.. 58

جدول شماره  ‏5‑8: نتایج mse شبکه عصبی آموزش دیده با الگوریتم رقابت استعماری.. 59

جدول شماره  ‏5‑9: نتایج mse شبکه عصبی آموزش دیده با الگوریتم پیش انتشار خطا 59

جدول شماره  ‏6‑1: میانگین و انحراف معیار خطای اجراهای ANN و BP61

جدول شماره  ‏6‑2: نتایج خطای پیش بینی با ANN و PSO.. 63

جدول شماره  ‏6‑3: نتایج خطای پیش بینی با ANN و ICA.. 63

  • فهرست شکل ها

 

این مطلب را هم بخوانید :


 

عنوانصفحه

شکل شماره  ‏3‑1 : نمونه ای تحلیل قیمت سهم با ابزارهای رویکرد تحلیل تکنیکال.. 20

شکل شماره ‏3‑2 : فرایند CRISP23

شکل شماره ‏3‑3 : ساختار یک نورون.. 27

شکل شماره ‏3‑4 : نمونه ای از یک شبکه عصبی مصنوعی با یک لایه پنهان.. 28

شکل شماره ‏3‑5 : نمونه نورون در شبکه عصبی مصنوعی پیشرو29

شکل شماره ‏3‑6 : فلوچارت عمومی الگوریتم های تکاملی.. 32