دانلود پایان نامه و مقاله کارشناسی ارشد

دانلود پایان نامه و مقاله کارشناسی ارشد- متن کامل - همه رشته ها

دانلود پایان نامه و مقاله کارشناسی ارشد

دانلود پایان نامه و مقاله کارشناسی ارشد- متن کامل - همه رشته ها

پایان نامه طراحی چشمه پروتون جهت درمان تومورهای چشمی و محاسبات دوزیمتری با بهره گرفتن از کد MCN...

جدول 4-5. انرژی متوسط طیف نهایی پرتو پروتون پس از خروج از نازل………………………………………………………………………….99

جدول 4-6. ضرایب وزنی جهت بهینه‌سازی پیک‌های براگ‌ اولیه متناظر با ضخامت‌های مختلف استوانۀ لگزان…………….102

جدول ‏4‑7. ساختارهای داخلی چشم و ابعاد آن‌ها [104] 100

جدول ‏4‑8. ترکیبات اصلی ساختارهای داخلی چشم، نسبت جرم اتمی و چگالی آن‌ها [104] 100

جدول 4-9. انرژی متوسط پروتون خروجی از انتقال‌دهندۀ برد متناظر با ضخامت‌های مختلف ستون آب…………………….106

جدول ‏4‑10. ضرایب وزنی بهینه کنندۀ پیک‌های اولیه جهت ساختن SOBP یکنواخت… 105

جدول ‏4‑11. تعیین پارامترهای درمانی برای SOBP ایجاد شده در روش اسکن پرتو. 107

جدول ‏4‑12. تعیین پارامترهای درمانی برای SOBP ایجاد شده در روش انتقال دهندۀ برد. 107

 

فهرست شکل‌‌ها

عنوان                                                                                                                               صفحه

شکل 1-1. پرتودرمانی با شدت مدوله شده با بهره گرفتن از فوتون (IMRT) 9

شکل 1-2. مقایسۀ توزیع دوز بین روش درمانی IMRT در سمت چپ وIMPT  در سمت راست… 10

شکل 1-3. افزایش دوز دریافتی توسط بافت سالم در ناحیۀ ابتدایی و انتهایی در فوتون‌تراپی در مقایسه با پروتون‌تراپی…. 10


شکل 1-4. نمودار توزیع دوز عمقی نسبی ذرات مختلف در فانتوم آب [4] 12

شکل 1-5. نمای کلی از یک سیستم پروتون‌تراپی برای تومورهای چشمی [13] 18

شکل 2-1. نمودار تغییرات توان توقف برحسب انرژی پروتون و الکترون فرودی برای مواد مختلف [38]…………………………27

شکل 2-2. نمودار تغییرات برد پروتون برحسب انرژی در مواد مختلف [39]…………………………………………………………………….28

شکل 2-3. نمودار دوز عمقی برای پرتو پروتون و پیک براگ و نمایش برد و پهن‌شدگی انرژی [4]………………………………..29

این مطلب را هم بخوانید :



شکل 2-4. نمایش پاشیدگی برد براساس  [38]………………………………………………………………………………………………………..30

شکل 2-5. پاشیدگی برد پروتون برحسب انرژی پرتو فرودی در مواد مختلف [40]…………………………………………………………30

شکل 2-6. نمای کلی از پراکندگی رادرفورد. 31

شکل 2-7. نمایش زاویۀ پراکندگی و میزان انرژی از دست رفته برای پروتون‌های MeV160 در مواد مختلف [39] 32

شکل 2-8. پراکندگی کولنی چندگانه برای پروتون ناشی از یک ورقۀ نازک… 33

شکل 2-9. بررسی دقت فرمول هایلند در مقایسه با اندازه‌گیری‌های تجربی برای زاویۀ پراکندگی پروتون [45] 34

شکل 2-10. نمودار شار پروتون برحسب انرژی جهت بررسی ضخامت‌های مختلف لگزان از 5 تا 9 سانتیمتر که به‌وسیلۀ کد MCNPX محاسبه شده است. 36

شکل 2-11. نمایی از یک سیستم شکل‌دهندۀ پرتو پروتون با بهره گرفتن از کاهش‌دهنده‌های دوتایی؛ در این سیستم S1 پراکنندۀ اول، RM مدولاتور برد، SS پراکنندۀ دوم، AP، موازی مخصوص بیمار و RC متعادل کنندۀ برد جهت هماهنگی برد پروتون با مرزهای انتهایی تومور با بافت سالم است. 36

شکل 2-12. نمایش سهم پروتون‌های اصلی و ثانویه در توزیع دوز کل در پیک براگ… 39

شکل 2-13. سطح مقطع برهم‌کنش ناکشسان برحسب برد پروتون فرودی [40] 39

شکل 2-14. احتمال رخ دادن برهم‌کنش ناکشسان برحسب برد پروتون فرودی با انرژی اولیۀ MeV 209 [40] 40

شکل 2-15. نمودار توزیع دوز برحسب عمق و پیک براگ و نمایش انباشت هسته‌ای [4] 40

شکل 2-16. نمایش سهم هر کدام از پدیده‌های فیزیکی در شکل‌گیری پیک براگ [4] 41

شکل 2-17. مجموعه ای از پیک براگ‌های اندازه‌گیری شده برای پروتون‌هایی با انرژی MeV 69 تا MeV 231. 42

شکل 2-18. شکل پیک براگ در صورت حضور (منحنی مشکی) و عدم حضور (نقطه‌چین) برهم‌کنش‌های هسته‌ای [51] 42

شکل 2-19. نمایش پارامترهای فیزیکی توصیف‌کنندۀ توزیع دوز SOBP [4] 44

شکل 2-20. نمایش توزیع دوز عرضی و پارامترهای فیزیکی توصیف‌کنندۀ آن [4] 44

شکل 2-21. SOBP با پهناهای مختلف وابسته به تعداد پیک براگ‌های به‌کار گرفته شده [4] 46

شکل 2-22. نمایش کلی از برهم‌نهی پیک براگ‌های بهینه شده با فاکتورهای وزنی و تشکیل SOBP. 46

شکل 2-23. نمونه‌هایی از انتقال‌دهنده‌های برد که جهت مدولاسیون در مسیر پرتو پروتون قرار داده می‌شوند. 48

شکل 2-24. نمونه‌ای از چرخ مدولاتور برد. 49

شکل 2-25. نمودار شار نوترون برحسب فاصلۀ عرضی از ایزوسنتر [57] 49

شکل 2-26. مقایسۀ شار نوترون تولید شده در صورت حضور و عدم حضور چرخ مدولاسیون برد [57] 50

شکل 2-27. نمایی از یک فیلتر شیاردار در جهت‌های مختصاتی مختلف در دستگاه دکارتی[69] 51

شکل 2-28. نمایش یک فیلتر مدوله کنندۀ برد زمانی که محور آن به اندازۀ θ درجه چرخش داشته باشد. 51

شکل 2-29. نمایی از یک سیستم پراکندگی ساده با یک پراکنندۀ مسطح.. 53

شکل 2-30. نمایی از سیستم پراکندگی دوگانه با بهره گرفتن از پراکنندۀ منحنی‌شکل.. 53

شکل 2-31. نمایی از یک پراکنندۀ منحنی‌شکل که ترکیبی از سرب و لگزان در کنار یک‌دیگر است. 54

شکل 2-32. نمایی از سیستم پراکندگی دوگانه با بهره گرفتن از پراکنندۀ دوحلقه‌ای.. 55

شکل 2-33. نمایش توزیع دوز ایجاد شده توسط هر بخش از پراکنندۀ دو حلقه‌ای و برهم‌نهی آن‌ها [81] 55

شکل 2-34. نمایی از سیستم پراکندگی دوگانه با بهره گرفتن از حلقه‌های مسدودکننده 56

شکل 2-35. توزیع دوز ایجاد شده توسط حلقه‌های مسدودکننده در سیستم پراکندگی دوگانه [82] 56

شکل 2-36. نمای کلی از سیستم شکل‌دهندۀ پرتو که در اصلاح رابطۀ آهنگ دوز ( معادلۀ (‏2‑34) ) به‌کار گرفته شده است. 61

شکل 2-37. نمایش وابستگی fMOD به زمان حضور عمیق ترین پیک در مدولاسیون برد [4] 62

شکل 3-1. میانگین میدان مغناطیسی به‌صورت تابعی از شعاع مدار پروتون در سیکلوترون IBA (بالا) [103]  و سیکلوترون PSI (پایین) [102] ………………………………………………………………………………………………………………………………………………………………..69

شکل 3-2. شکل شماتیک از چشمۀ یونی مورد استفاده در یک سیکلوترون [4]………………………………………………………………70

شکل 3-3. بازده سیستم انتخاب انرژی مربوط به سیکلوترون IBA برحسب برد پروتون‌های ورودی به نازل [104] 71

شکل 3-4. نمای کلی از یک چرخه در سینکروترون که شامل تزریق پروتون‌های MeV 2 یا MeV 7، شتاب پروتون‌ها تا انرژی دلخواه در زمانی کمتر از 5/0 ثانیه، خروج آهستۀ پروتون‌های شتاب داده شده به خط پرتو در زمانی بین 5-5/0 ثانیه و در آخر کاهش سرعت و تخلیۀ پروتون‌های استفاده نشدۀ باقی‌مانده [4] 73

شکل 3-5. نمای کلی از نازل HCL که برای درمان تومورهای چشمی به‌کار گرفته شده است و به‌ترتیب شامل چرخ مدولاتور برد (K)، موازی‌ساز اول (F)، انتقال‌دهندۀ برد با ضخامت متغیر (L)، کاهندۀ انرژی با ضخامت ثابت (G)، موازی‌ساز دوم (H)، آشکارساز نظارت (B)، صفحات آشکارساز یونی (J)، محفظۀ خالی (C)، موازی‌ساز مخروطی شکل (D) و موازی‌ساز مخصوص بیمار (E) می‌باشد [114]……………………………………………………………………………………………………………………………………….78

شکل 4-1. نمای کلی از فانتوم شبیه‌سازی شده و مورد استفاده در محاسبات دوزیمتری در روش اسکن مغناطیسی پرتو. 79

شکل 4-2. نمونه‌ای از پیک‌های براگ‌ تشکیل شده در فانتوم چشم با ترکیبات واقعی تومور در روش اسکن پرتو………….80

شکل 4-3. توزیع دوز نسبی برحسب عمق برای پروتون MeV 32 و MeV 24 و مقایسۀ آن‌ها در دو فانتوم چشم با ترکیبات واقعی تومور (نقطه‌چین) و آب (منحنی مشکی)………………………………………………………………………………………………………81

شکل 4-4. منحنی ایزودوز نسبی مربوط به تابش پرتو پروتون با انرژی MeV 32 در فانتوم آب ( منحنی قرمز رنگ) و محیط چشمی (منحنی نقطه‌چین)…………………………………………………………………………………………………………………………………………82

شکل 4-5. نمایی از یک ماتریس  به‌عنوان ماتریس توصیف‌کنندۀ پیک‌های براگ مشارکت‌کننده در تولید SOBP تعداد ستون‌ها بیانگر تعداد پیک‌ها و تعداد سطرها بیانگر تعداد وکسل‌ها است.. 83

شکل 4-6. تعیین درایۀ مربوط به بیشینه مقدار دوز برای هر پیک براگ ………………………………………………………………………….84

شکل 4-7. معادلۀ ماتریسی جهت محاسبۀ ضرایب وزنی در این شکل، ماتریس‌ها از چپ به راست به‌ترتیب برابر با ماتریس مربوط به پیک‌های براگ، ماتریس ضرایب وزنی و ماتریس مربوط به بخش مسطح SOBP می‌باشند. ماتریسی که دور آن خط کشیده شده، ماتریس مجهول مربوط به ضرایب وزنی است…………………………………………………………………………………………..84

شکل 4-8. SOBP حاصل از برهم‌نهی پیک‌های براگ بهینه شده داخل تومور در هر دو فانتوم منحنی مشکی مربوط به آب و منحنی نقطه‌چین مربوط به محیط چشمی

نظرات 0 + ارسال نظر
برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)
ایمیل شما بعد از ثبت نمایش داده نخواهد شد